Bruchspiegel

Aus Lexikon der Kunststoffprüfung
Wechseln zu: Navigation, Suche
Ein Service der
Datei:logo_psm.jpg
Polymer Service GmbH Merseburg
Tel.: +49 3461 46 2895
E-Mail: info@psm-merseburg.de
Web: www.psm-merseburg.de

Bruchspiegel

Inhaltsverzeichnis

Allgemeines

Aus der Bruchfläche können Informationen über die Bruchursache (siehe Bruchentstehung), die Art der Beanspruchung (statisch, dynamisch bzw. Zug, Biegung, Torsion usw.) und Konstruktions- sowie Werkstofffehler (siehe Fehler) (Inhomogenitäten, Fremdeinschlüsse) gewonnen werden.

Berücksichtgung des Bruchspiegels bei der Kennwertangabe

Die Diagnostik des Bruches bezeichnet man als Fraktografie bzw. Mikrofraktographie. Die Bruchflächen von genormten Standardprüfkörpern zur bruchmechanischen Kenngrößenermittlung enthalten Informationen zum Aussehen und zur Länge des Ausgangsrisses und zur Ausbildung der plastischen Zone vor der Rissspitze. Die Länge der plastischen Zone wird in der LEBM mit Kleinbereichsfließen zur Kennwertermittlung herangezogen. Unter der Voraussetzung, dass dieser plastisch verformte Bereich klein ist gegenüber den Bauteilabmessungen und der Ligamentlänge (W–a) kann man ihn durch die Annahme einer effektiven Risslänge

a_{eff}\,=\,a\,+\,r_{pl}

mit

rpl Radius der plastischen Zone
a Länge des Ausgangsrisses, Kerbtiefe (häufig auch mit a0 bezeichnet)

in Form des effektiven Spannungsintensitätsfaktors

K_{I}(a_{eff})\,=\,\sigma\left(\pi a _{eff}\right)^\frac{1}{2}\, f \left(\frac{a_{eff}} {W} \right)

berücksichtigen [1].

Aussagen über die theoretische Basis dieser Erweiterung der linear-elastischen Bruchmechanik (LEBM) auf das Kleinbereichsfließen und die Größe der kreisförmig angenommenen plastischen Zone sind in der bruchmechanischen Literatur [1–3] dargestellt.

Bei der bruchmechanischen Kennwertermittlung wird der Radius der plastischen Zone als Bruchflächenphänomen in Form des Bruchspiegels beobachtet, womit die Ausgangsrisslänge a um die häufig mikroskopisch gemessene Länge des stabilen Risswachstums erweitert wird, und mit

a_{eff}\,=\,a\,+\,a_{BS}

mit

aBS Bruchspiegel, Länge des stabilen Risswachstums

wird formal der Übergang von der linear-elastischen Bruchmechanik (LEBM) zur LEBM mit Kleinbereichsfließen vollzogen [4]. Bei sehr spröden Gefügen, bei hohen Beanspruchungsgeschwindigkeiten bzw. tiefen Temperaturen ist der Bruchspiegel sehr klein oder vernachlässigbar.

Ausbildung des Bruchspiegels auf Glasbruchflächen

Der Nachweis der Existenz eines Bruchspiegels erfolgte zunächst für den Werkstoff Glas und wird von Spauszus in [5] dargestellt. Spauszus beschreibt den Bruchverlauf und das Aussehen der Bruchfläche in einem Glasstab unter Zugbeanspruchung (Bild 1).

Bild 1: Bruchfläche nach Zugbeanspruchung eines runden Glasstabes (nach Leeuverik und Burgers) [5]

a) Lichtmikroskopisch;
b) schematisch)

Sp Spiegel
Rf Fläche feiner Rauigkeit
Rg Fläche grober Rauigkeit; G muss die für die Bruchauslösung notwendige kritische Größe Gc erreichen bzw. überschreiten.

An den Bruchursprung schließt sich auf der Bruchfläche eine kreisförmige völlig glatte Fläche an, die auf Grund ihres Aussehens als Bruchspiegel (Sp) bezeichnet wird.

Beide Spiegelflächen der Stabhälfte lassen sich mit lichtoptischer Genauigkeit zusammenfügen. Auf ein Gebiet feiner Rauigkeit (Rf) folgt die Zone grober Rauigkeit (Rg). Während die Spiegelflächen senkrecht zur Hauptspannungsrichtung orientiert sind, bilden die rauen Zonen als Folge einer Bruchverzweigung zum Spiegel abgewinkelte Flächen, wobei im Verlaufe des Bruchvorganges oft ein keilförmiges Glasstück herausgeschleudert wird (Bild 2).

Bild 2: Bruchverlauf in einem Glasstab bei Zugbeanspruchung [5]

1 Spiegelfläche
2 Bruchverzweigung
3 raue Bruchfläche
4 keilförmiges Glasstück

Literaturhinweise

[1] Blumenauer, H.; Pusch, G.: Technische Bruchmechanik. Verlag für Grundstoffindustrie, Leipzig (1987) 2. Auflage, S. 66 (siehe AMK-Büchersammlung unter E 29-2)
[2] Anderson, T.L.: Fracture Mechanics, Fundamentals and Application. 3rd Ed., CRC Press Boca Raton (2005) (ISBN 978-0849342608; siehe AMK-Büchersammlung unter E 8-2)
[3] Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München Wien (1980) (ISBN 3-446-12983-9; siehe AMK-Büchersammlung unter E 15)
[4] Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 254 (ISBN 978-3-446-44350-1; siehe AMK-Büchersammlung unter A 18)
[5] Spauszus, S.: Werkstoffkunde Glas. Deutscher Verlag für Grundstoffindustrie, Leipzig (1974)
Buch erstellen
Persönliche Werkzeuge