SENB-Prüfkörper: Unterschied zwischen den Versionen
Zeile 63: | Zeile 63: | ||
[3] Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München Wien (1995) 1. Auflage S. 247–248 | [3] Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München Wien (1995) 1. Auflage S. 247–248 | ||
<br> | <br> | ||
− | [4] MPK-IKBV (2009): Prüfung von Kunststoffen – Instrumentierter Kerbschlagbiegeversuch, Prozedur zur Ermittlung des Risswiderstandsverhalten aus dem instrumentierten Kerbschlagbiegeversuch, | + | [4] MPK-IKBV (2009): Prüfung von Kunststoffen – Instrumentierter Kerbschlagbiegeversuch, Prozedur zur Ermittlung des Risswiderstandsverhalten aus dem instrumentierten Kerbschlagbiegeversuch, [http://www.www2.iw.uni-halle.de/ww/mpk/p_d.pdf Download] |
<br> | <br> | ||
[5] Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, 3th Ed., ASME Press, New York (2000) | [5] Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, 3th Ed., ASME Press, New York (2000) | ||
<br> | <br> | ||
− | [6] Srawley, J.E., Gross, B.: | + | # [6] Srawley, J.E., Gross, B.: |
Version vom 6. Dezember 2010, 13:34 Uhr
SENB-Prüfkörper
Der SENB-Prüfkörper wird im Deutschen als Dreipunktbiegeprüfkörper bezeichnet und die englische Abkürzung SENB steht für "single-edge-notched-bending"
Anforderungen an die Prüfkörpergeometrie
Bei der experimentellen Ermittlung bruchmechanischer Kennwerte sind die folgenden grundsätzlichen Bedingungen einzuhalten:
- Die Prüfkörperabmessungen müssen unter den jeweiligen Prüfbedingungen wesentlich größer als die Ausdehnung der plastischen Zone an der Rissspitze sein.
- Die Kraft, die Kerbaufweitung und die Kraft-Kraftangriffspunkt-Verschiebung müssen kontinuierlich erfassbar sein.
- Für die Berechnung des Spannungsintensitätsfaktor K im Moment der instabilen Rissausbreitung muss die Belastung des Prüfkörpers und die kritische Risslänge exakt bestimmbar sein.
- Für die entsprechende Prüfkörpergeometrie muss die Bestimmungsgleichung, d.h. der Zusammenhang zwischen Beanspruchung und Risslänge bekannt sein.
Zur Erfüllung dieser Forderungen wurden eine Reihe von Festlegungen getroffen, die ausgehend von dem ASTM-Standard E 399 [1] in die bisher vorliegenden Standards Eingang gefunden haben.
Prüfkörperform
Bild: Schematische Darstellung des SENB-Prüfkörpers
Abmessungen (nach [1, 2]):
W = 2 B, Sonderform: W = B bis 4 B
s = 4 W s/W = 4, s = 40 mm
L = 4,5 W
a = (0,45–0,55) W
N 1,5 mm bei U- und V-Kerb für Metalle
Typische Abmessungen für Kunststoffe (nach [3, 4]):
W = 10 mm
B = 4 mm (in Variation B = 2...10 mm)
L = 80 mm
s = 40 mm (in Variation s = 40...70 mm)
a = 2 mm (in Variation a = 0,5...7,5 mm)
N 1,5 mm
l 1,3 mm
r 0,25 mm
r = 0,125 µm
Bestimmungsgleichung
Literatur
[1] ASTM E 399 (2009): Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
[2] Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (2003) 3. Auflage
[3] Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München Wien (1995) 1. Auflage S. 247–248
[4] MPK-IKBV (2009): Prüfung von Kunststoffen – Instrumentierter Kerbschlagbiegeversuch, Prozedur zur Ermittlung des Risswiderstandsverhalten aus dem instrumentierten Kerbschlagbiegeversuch, Download
[5] Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, 3th Ed., ASME Press, New York (2000)
- [6] Srawley, J.E., Gross, B.: