Stepped Isothermal Methode, Zugbeanspruchung: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{PSM_Infobox}} <span style="font-size:1.2em;font-weight:bold;">Stepped Isothermal Methode, Zugbeanspruchung</span> __FORCETOC__ ==Allgemeines== Die experimentel…“) |
|||
Zeile 8: | Zeile 8: | ||
==Durchführung der SIM-Methode an Kunststoffen== | ==Durchführung der SIM-Methode an Kunststoffen== | ||
− | Eine Möglichkeit zur Reduzierung finanzieller und zeitlicher Erfordernisse zur Charakterisierung des Langzeitkriechverhaltens von [[Kunststoffe]]n stellt das Stepped-Isothermal (SIM)-Verfahren dar. Dabei handelt es sich um ein bereits auf dem Sektor der Geokunststoffe durch Thornton [2, 3] eingeführtes und in der ASTM D 6992 [4] für diese Werkstoffe standardisiertes Verfahren [5–7]. Seit einigen Jahren werden Bestrebungen forciert, diese Prüfmethodik auch auf andere Gruppen polymerer Werkstoffe zu übertragen, wie neuere Arbeiten an verschiedenen [[Thermoplaste|thermoplastischen Kunststoffen]] ,wie bspw. Polypropylen zeigen [8–11]. | + | Eine Möglichkeit zur Reduzierung finanzieller und zeitlicher Erfordernisse zur Charakterisierung des Langzeitkriechverhaltens von [[Kunststoffe]]n stellt das Stepped-Isothermal (SIM)-Verfahren dar. Dabei handelt es sich um ein bereits auf dem Sektor der Geokunststoffe durch Thornton [2, 3] eingeführtes und in der ASTM D 6992 [4] für diese Werkstoffe standardisiertes Verfahren [5–7]. Seit einigen Jahren werden Bestrebungen forciert, diese Prüfmethodik auch auf andere Gruppen polymerer Werkstoffe zu übertragen, wie neuere Arbeiten an verschiedenen [[Thermoplaste|thermoplastischen Kunststoffen]], wie bspw. Polypropylen zeigen [8–11]. |
[[Datei:SIM_zug_1.jpg]] | [[Datei:SIM_zug_1.jpg]] | ||
Zeile 24: | Zeile 24: | ||
|-valign="top" | |-valign="top" | ||
|[1] | |[1] | ||
− | |DIN EN ISO 899 | + | |DIN EN ISO 899: Kunststoffe – Bestimmung des Kriechverhaltens<br>Teil 1 (2017-07): Zeitstand-Zugversuch (Entwurf)<br>Teil 2 (2015-06): Zeitstand-Biegeversuch bei Dreipunkt-Belastung |
|-valign="top" | |-valign="top" | ||
|[2] | |[2] | ||
Zeile 42: | Zeile 42: | ||
|-valign="top" | |-valign="top" | ||
|[7] | |[7] | ||
− | |Yeo, S.-S., Hsuan, Y. G.: Evaluation of Creep Behavior of High Density | + | |Yeo, S.-S., Hsuan, Y. G.: Evaluation of Creep Behavior of High Density Polyethylene and Polyethylene-terephthalate Geogrids. Geotextiles and Geomembranes 28 (2010) 409–421 |
|-valign="top" | |-valign="top" | ||
|[8] | |[8] |
Version vom 18. Dezember 2017, 12:51 Uhr
Ein Service der |
---|
Polymer Service GmbH Merseburg |
Tel.: +49 3461 30889-50 E-Mail: info@psm-merseburg.de Web: https://www.psm-merseburg.de |
Unser Weiterbildungsangebot: https://www.psm-merseburg.de/weiterbildung |
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg |
Stepped Isothermal Methode, Zugbeanspruchung
Allgemeines
Die experimentelle Bestimmung des Zeitstand- bzw. Kriechverhaltens von Kunststoffen erfolgt bisher hauptsächlich im Zeitstandzugversuch nach DIN EN ISO 899-1 unter statischer einachsiger Zugbeanspruchung (DIN EN ISO 899-2 für den Zeitstandbiegeversuch) anhand von Vielzweckprüfkörpern und dient der Bewertung des mechanischen Langzeitverhaltens von Polymerwerkstoffen [1]. Da die Ermittlung von Werkstoffkennwerten für konstruktive Zwecke dabei die Prüfung eines breiten Bereichs an Spannungen, Zeiten und Umgebungsbedingungen erforderlich macht, ist die klassische Bewertung des Langzeitkriechverhaltens polymerer Werkstoffe durch den Zeitstandzugversuch eine extrem zeit- und kostenintensive Methode.
Durchführung der SIM-Methode an Kunststoffen
Eine Möglichkeit zur Reduzierung finanzieller und zeitlicher Erfordernisse zur Charakterisierung des Langzeitkriechverhaltens von Kunststoffen stellt das Stepped-Isothermal (SIM)-Verfahren dar. Dabei handelt es sich um ein bereits auf dem Sektor der Geokunststoffe durch Thornton [2, 3] eingeführtes und in der ASTM D 6992 [4] für diese Werkstoffe standardisiertes Verfahren [5–7]. Seit einigen Jahren werden Bestrebungen forciert, diese Prüfmethodik auch auf andere Gruppen polymerer Werkstoffe zu übertragen, wie neuere Arbeiten an verschiedenen thermoplastischen Kunststoffen, wie bspw. Polypropylen zeigen [8–11].
Bild 1: | Schematische Darstellung des SIM-Verfahrens an Kunststoffen |
Das SIM-Verfahren basiert auf dem von Arrhenius beschriebenen Ansatz, der besagt, dass Zeit und Temperatur in einem äquivalenten Verhältnis zueinander stehen (siehe Zeit-Temperatur-Verschiebungsgesetz). Das bedeutet, dass ein Versuch bei niedriger Temperatur und höherer Geschwindigkeit im Idealfall genauso abläuft, wie ein vergleichbarer Versuch bei höherer Temperatur und niedriger Geschwindigkeit. Auf dieser Grundlage wird beim konventionellen SIM-Verfahren ein aus Kunststoff bestehender Prüfkörper mit einer vergleichsweise niedrigen konstanten Zugspannung beansprucht. Dabei wird während des Versuchs die Temperatur in jeweils definierten zeitlichen Abständen um einen konstanten Betrag stufenweise erhöht und die währenddessen entstehende Dehnungszunahme (Kriechen) kontinuierlich erfasst (Bild 1). Nach der Korrektur des Temperatureinflusses auf die Dehnung (durch die lastlose Ermittlung der thermischen Volumenänderung) werden die den einzelnen Temperaturrampen entsprechenden Kurvenabschnitte nach logarithmischer Umwandlung der Zeitachse zu einer Masterkurve zusammengesetzt. Dabei hat sich gezeigt, dass die mittels SIM-Verfahrens ermittelten Kriechkurven eine sehr hohe Korrelation zu den im Zeitstandzugversuch ermittelten Kriechkurven aufweisen [5–7, 10].
Literaturhinweise
[1] | DIN EN ISO 899: Kunststoffe – Bestimmung des Kriechverhaltens Teil 1 (2017-07): Zeitstand-Zugversuch (Entwurf) Teil 2 (2015-06): Zeitstand-Biegeversuch bei Dreipunkt-Belastung |
[2] | Thornton, J. S., Allen, S. R., Thomas, R. W., Sandri, D.: The Stepped Isothermal Method for Time-Temperature Superposition and its Application to Creep Data on Polyester Yarn. Sixth International Conference on Geosynthetics, 25.–29.03.1998, Atlanta, Proceedings, S. 699–706 |
[3] | Thornton, J. S., Paulson, J. N., Sandri, D.: Conventional and Stepped Isothermal Methods for Characterizing Long Term Creep Strength of Polyester Geogrids Creep of Product. Sixth International Conference on Geosynthetics, 25.–29.03.1998, Atlanta, Proceedings, S. 691–698 |
[4] | ASTM D 6992 (2016): Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method |
[5] | Zornberg, J. G., Byler, B. R., Knudsen, J. W.: Creep of Geotextiles using Time–Temperature Superposition Methods. Journal of Geotechnical and Geoenvironmental Engineering 130 (2004) 1158–1168 |
[6] | Bueno, B. S., Costanzi, M. A., Zornberg, J. G.: Conventional and Accelerated Creep Tests on Nonwoven Needle-punched Geotextiles. Geosynthetics International 12 (2005) 276–287 |
[7] | Yeo, S.-S., Hsuan, Y. G.: Evaluation of Creep Behavior of High Density Polyethylene and Polyethylene-terephthalate Geogrids. Geotextiles and Geomembranes 28 (2010) 409–421 |
[8] | Alwis, K. G. N. C., Burgoyne, C. J.: Accelerated Creep Testing for Aramid Fibres using the Stepped Isothermal Method. Journal of Materials Science 43 (2008) 4789–4800 |
[9] | Thomas, R., Nelson, J., Cuttino, D.: The Use of the Stepped Isothermal Method for Estimating the Long-term Creep Modulus, Creep Strain and Strength of Polyethylene Pipe Resins. Plastic Pipes XV, 20–22.09.2010, Vancouver, Proceedings, S. 10 |
[10] | Bozorg-Haddad, A., Iskander, M.: Predicting Compressive Creep Behavior of Virgin HDPE using Thermal Acceleration. Journal of Materials in Civil Engineering 23 (2011) 1154–1162 |
[11] | Achereiner, F., Engelsing, K., Bastian, M., Heidemeyer, P.: Accelerated Creep Testing of Polymers using the Stepped Isothermal Method. Polymer Testing 32 (2013) 447–454 |