Auswertemethode nach Kanazawa

Aus Lexikon der Kunststoffprüfung
Zur Navigation springen Zur Suche springen
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Ein Service der
Logo psm.jpg
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Unser Weiterbildungsangebot:
https://www.psm-merseburg.de/weiterbildung
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

Auswertemethode nach Kanazawa

J-Integral-Auswertungsmethode

Grundannahme der Auswertemethode

Bei der Bestimmung von bruchmechanischen Kennwerten nach dem J-Integral-Konzept werden J-Integral-Auswertemethoden eingesetzt [1].

Bei der J-Integral-Auswertemethode nach Kanazawa [2–4] wird zur Bestimmung von -Werten eine komplementäre Verformungsenergie AK eingeführt. Er modifizierte den Berechnungsansatz nach Rice, da bei Rice für geringe Risslängen zu kleine J-Werte erhalten wurden. Kanazawa leitete hierfür eine Korrekturfunktion ab.

mit

Damit ergibt sich der J-Wert allgemein zu:

Auswertemethode K1.jpg

Bild 1: Bestimmung des J-Integrals nach der Auswertemethode von Kanazawa

Bestimmungsgleichung für Single-Edge-Notched Bend (SENB)-Prüfkörper

Für den konkreten Fall des SENB-Prüfkörpers gilt für die Bestimmungsgleichung:

mit: AK = Fmax fmax − AG als komplementäre Verformungsenergie

für 0 < a/W < 1 und

Die Bedeutung von α für die bruchmechanische Kennwertermittlung mit Hilfe von Dreipunktbiegeprüfkörpern kann unter Verwendung der entsprechenden Geometriefunktion f(a/W) von Tada [6]

aus der grafischen Darstellung in Bild 2 abgeleitet werden.

Auswertemethode K2.jpg

Bild 2: Geometriefunktion des J-Integralauswerteverfahrens nach Kanazawa in Abhängigkeit vom a/W-Verhältnis für Dreipunktbiegebeanspruchung und s/W = 4

Bestimmungsgleichung für Compact Tension (CT)-Prüfkörper

Für den CT-Prüfkörper gelten folgende Bestimmungsgleichungen:






mit


Im Ergebnis von umfangreichen Untersuchungen zur Risslängenabhängigkeit des J-Integrals wurde in [1, 5] nachgewiesen, dass die J-Auswertemethoden von Kanazawa und Rice, Paris und Merkle für kleine Risslängen zu hohe bruchmechanische Kennwerte liefern.


Literaturhinweise

[1] Grellmann, W.: Beurteilung der Zähigkeitseigenschaften von Polymerwerkstoffen durch bruchmechanische Kennwerte. Habilitation (1986), Technische Hochschule Merseburg, Wiss. Zeitschrift TH Merseburg 28 (1986), H 6, S. 787–788 (Inhaltsverzeichnis, Kurzfassung)
[2] Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München Wien (1980), (ISBN 3-446-12983-9; siehe AMK-Büchersammlung unter E 15)
[3] Kanazawa, T., Machida, D., Onozuka, M., Kaned, S.: Report of the University of Tokyo HWx-779-75 in [4]
[4] Kromp, K., Pabst, R. F.: Über die Ermittlung von J-Integralwerten bei keramischen Werkstoffen im Hochtemperaturbereich. Materialprüfung 22 (1980) 6, S. 241–245
[5] Grellmann, W., Sommer, J.-P.: Beschreibung der Zähigkeitseigenschaften von Polymerwerkstoffen mit dem J-Integralkonzept. Institut für Mechanik, Berlin und Karl-Marx-Stadt, Fracture Mechanics, Micromechanics and Coupled Fields – (FMC)-Series (1985) 17, S. 48–72
[6] Tada, H., Paris, P. C., Irwin, G. R.: The Stress Analysis of Cracks Handbook. Hellertown Pennsylvania, Del. Res. Corp. (1973)