Auswertemethode nach Sumpter und Turner

Aus Lexikon der Kunststoffprüfung
Zur Navigation springen Zur Suche springen
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Ein Service der
Logo psm.jpg
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Unser Weiterbildungsangebot:
https://www.psm-merseburg.de/weiterbildung
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

Auswertemethode nach Sumpter und Turner

J-Integral-Auswertungsmethode

Grundannahme der Auswertemethode

Bei der Bestimmung von bruchmechanischen Kennwerten nach dem J-Integral-Konzept werden J-Integral-Methoden eingesetzt.

Von Sumpter und Turner [1] stammt der Vorschlag zur Bestimmung von -Werten, die gesamte, von der äußeren Kraft eingebrachte, Energie AG in zwei Anteile aufzuspalten, also einen elastischen Ael und einen plastischen Apl Anteil mit:

AG = Ael + Apl

Auswertemethode ST1.jpg

Bild 1: Bestimmung des J-Integrals nach Sumpter und Turner [1, 2]

Bestimmungsgleichungen für SENB- und CT-Prüfkörper

Die Bestimmung von -Werten ist dann durch folgende Gleichung gegeben:

gültig für 0 < a/W < 1

f(a/W) = 2 für a/w > 0,45

mit

Ael elastischer Anteil an der Verformungsenergie
Apl plastischer Anteil an der Verformungsenergie
ηel elastischer Faktor
ηpl plastischer Faktor und
ηel, ηpl = f(a/W)

ηel kann aus dem elastischen Teil der Kraft-Kraftangriffspunktverschiebung-Kurve bestimmt werden

ηpl ist bei Dreipunktbiegeprüfkörpern für a/W > 0,2 ηpl = 2
ηpl ist bei Compact Tension-Prüfkörpern für a/W > 0,6 ηpl = 2 (siehe ASTM STP 700)

Für SENB-Prüfkörper gilt folgende Beziehung für ηel:

mit: f(a/W) als Korrekturfunktion

In der Literatur wird von Schwalbe [3] und Blumenauer [4] der folgende Zusammenhang angegeben (Tabelle):

Tabelle: Werte für ηel bei unterschiedlichen Prüfkörpern und a/W-Verhältnissen

ηel a/W 0,2 0,3 0,4 0,5 0,6 0,7
SENB s/W = 4 1,4 1,7 1,9 2,0 2,0 1,9
CT H/W = 1,2 3,7 2,7 2,4 2,3 2,2 2,2

Auswertemethode ST2.jpg

Bild 2: Zusammenhang zwischen elastischem Faktor und dem a/W-Verhältnis [5, 6]

ηel ist für den SENB-Prüfkörper wie folgt definiert:

ηel = 5(a/W)2 + 5,5(a/W) + 0,5

ηpl ist auch über COD-Versuchstechnik ermittelbar, erfordert dann aber Kenntnis über den Rotationsfaktor n:

Auswerteprozedur

Die experimentelle Vorgehensweise zur Ermittlung von geometrieunabhängigen bruchmechanischen Kennwerten mit Hilfe des instrumentierten Kerbschlagbiegeversuches (IKBV) bei dynamischer Beanspruchung wird in der validierten Prozedur des Prüflabors „Mechanische Prüfung von Kunststoffen“: MPK-Prozedur „MPK-IKBV“ ausführlich erläutert [7].


Literaturhinweise

[1] Sumpter, J. D. G., Turner, C. E.: ASTM STP 601 (1976): Cracks and Fracture. Method for Laboratory Determination of Jc. p. 3–18
[2] Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 264/265 und S. 271–273 (ISBN 978-3-446-44350-1; siehe AMK-Büchersammlung unter A 18)
[3] Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München Wien (1980), (ISBN 3-446-12983-9; siehe AMK-Büchersammlung unter E 15)
[4] Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig (1981) 1. Auflage, (siehe AMK-Büchersammlung unter E 29-1)
[5] Sumpter, J. D. G.: Elastic-Plastic Fracture Analysis and Design Using the Finite Element Method. Ph.D thesis University of London (1974)
[6] Chipperfield, C. G.: A Summary and Comparison of J Estimation Procedure. Journal of Testing and Evaluation (JTEVA), Vol. 6 No. 4 July (1978) 253–259
[7] MPK-Prozedur MPK-IKBV (2016-08): Prüfung von Kunststoffen – Instrumentierter Kerbschlagbiegeversuch: Prozedur zur Ermittlung des Risswiderstandverhaltens aus dem instrumentierten Kerbschlagbiegeversuch