Instrumentierter Kerbschlagzugversuch: Unterschied zwischen den Versionen

Aus Lexikon der Kunststoffprüfung
Zur Navigation springen Zur Suche springen
Zeile 1: Zeile 1:
<span style="font-size:1.2em;font-weight:bold;">Instrumentierter Kerbschlagzugversuch</span>
+
<span style="font-size:1.2em;font-weight:bold;">Instrumentierter Kerbschlagzugversuch (IKZV)</span>
  
Der instrumentierte Kerbschlagzugversuch wird mit dem Ziel der Bestimmung bruchmechanischer Kennwerte von Folien und Elastomeren, jedoch auch von thermoplastischen Kunststoffen, durchgeführt.
+
[[Datei:psm_logo.jpg|75px|thumb|[http://www.psm-merseburg.de Polymer Service GmbH Merseburg]]]
  
Durch die [[Instrumentierung]] von Schlagzug-Pendelschlagwerken, d.h. die Anbringung von [[Dehnmessstreifen]] oder eines Piezokraftaufnehmers zur Aufzeichnung des Kraft-Zeit-Verlaufes, wird ein Wissenszuwachs bezüglich der Bewertung der Zähigkeitseigenschaften erreicht. Es ist möglich, unterschiedliche Energieanteile an der Gesamtverformung zu definieren und zu bewerten sowie Messgrößen wie Maximalkraft F<sub>max</sub> und die zugehörige Verformungsgröße l<sub>max</sub> zu ermitteln. Die [[Messgröße]]n liefern im Rahmen eines Werkstoffvergleiches oder im Rahmen einer Werkstoffoptimierung wichtige Hinweise zur Interpretation der ermittelten Risszähigkeitskennwerte.
+
Der instrumentierte Kerbschlagzugversuch wird mit dem Ziel der Bestimmung bruchmechanischer Kennwerte von Folien und [[Elastomere]]n, jedoch auch von [[Thermoplaste|thermoplastischen Kunststoffen]], durchgeführt.
 +
 
 +
Durch die [[Instrumentierung]] von Schlagzug-Pendelschlagwerken, d. h. die Anbringung von [[Dehnmessstreifen]] oder eines [[Piezoelektrischer Kraftaufnehmer|Piezokraftaufnehmers]] zur Aufzeichnung des Kraft-Zeit-Verlaufes, wird ein Wissenszuwachs bezüglich der Bewertung der Zähigkeitseigenschaften erreicht. Es ist möglich, unterschiedliche Energieanteile an der Gesamtverformung zu definieren und zu bewerten sowie Messgrößen wie Maximalkraft F<sub>max</sub> und die zugehörige Verformungsgröße l<sub>max</sub> zu ermitteln. Die [[Messgröße]]n liefern im Rahmen eines Werkstoffvergleiches oder im Rahmen einer Werkstoffoptimierung wichtige Hinweise zur Interpretation der ermittelten Risszähigkeitskennwerte.
  
 
Für die Untersuchungen werden doppelseitig metallklingengekerbten Prüfkörper ([[DENT-Prüfkörper]], siehe '''Bild 1''') verwendet.
 
Für die Untersuchungen werden doppelseitig metallklingengekerbten Prüfkörper ([[DENT-Prüfkörper]], siehe '''Bild 1''') verwendet.
Zeile 11: Zeile 13:
 
|- valign="top"
 
|- valign="top"
 
|width="50px"|'''Bild 1''':  
 
|width="50px"|'''Bild 1''':  
|width="600px" |Doppelseitig gekerbter Prüfkörper für die Durchführung des Kerbschlagzugversuches
+
|width="600px" |Doppelseitig gekerbter [[Prüfkörper]] für die Durchführung des [[Kerbschlagzugversuch]]es
 
|}
 
|}
  
Die Auswahl des zu verwendenden Pendelhammers, und damit der maximal angebotenen Energie, erfolgt in Abhängigkeit von den Eigenschaften des zu untersuchenden Werkstoffes. Teilweise verfügen die Pendelschlagwerke auch über Zusatzeinheiten zur definierten Einstellung des Fallwinkels und damit der Pendelhammergeschwindigkeit. Das bedeutet, die bruchmechanischen Eigenschaften von Kunststoffen können in diesem Fall auch in Abhängigkeit von der Beanspruchungsgeschwindigkeit charakterisiert werden. Die Prüfkörper haben die Abmessungen L mindestes 64 mm, W = 10 mm und die Gesamtkerbtiefe a = 2 mm. Die Einspannlänge l<sub>0</sub> beträgt 30 mm. Die Versuchsanordnung ist in folgenden Bildern dargestellt.
+
Die Auswahl des zu verwendenden Pendelhammers, und damit der maximal angebotenen Energie, erfolgt in Abhängigkeit von den Eigenschaften (siehe [[Bruchmechanische Prüfung]] des zu untersuchenden Werkstoffes. Teilweise verfügen die Pendelschlagwerke auch über Zusatzeinheiten zur definierten Einstellung des Fallwinkels und damit der Pendelhammergeschwindigkeit. Das bedeutet, die bruchmechanischen Eigenschaften von [[Kunststoffe]]n können in diesem Fall auch in Abhängigkeit von der [[Prüfgeschwindigkeit|Beanspruchungsgeschwindigkeit]] charakterisiert werden. Die Prüfkörper haben die Abmessungen L mindestes 64 mm, W = 10 mm und die Gesamtkerbtiefe a = 2 mm. Die Einspannlänge l<sub>0</sub> beträgt 30 mm. Die Versuchsanordnung ist in folgenden Bildern dargestellt.
  
[[Datei:IKZV_schematisch_PKEinspann.jpg|300px]]
+
[[Datei:IKZV_schematisch_PKEinspann_neu.jpg|300px]]
  
  
 
[[Datei:IKZV_Foto_Einspannung.jpg|300px]]
 
[[Datei:IKZV_Foto_Einspannung.jpg|300px]]
  
Im Ergebnis des instrumentierten Kerbschlagzugversuches erfolgt auf der Grundlage der ausgewerteten Kraft-Verlängerungs-Diagramme die Berechnung von bruchmechanischen Zähigkeitskennwerten. Bei diesen Zähigkeitskennwerten handelt es sich bevorzugt um J<sub>d</sub>-Werte, die den Widerstand des untersuchten Werkstoffes gegen die Ausbreitung eines instabilen Risses quantifizieren. Ein Vorteil dieser Kennwerte im Vergleich zu der im konventionellen Kerbschlagzugversuch ermittelten Kerbschlagzugzähigkeit a<sub>tN</sub> besteht beispielsweise in ihrer besonderen Struktursensitivität.
+
Im Ergebnis des instrumentierten Kerbschlagzugversuches erfolgt auf der Grundlage der ausgewerteten Kraft-Verlängerungs-Diagramme die Berechnung von bruchmechanischen Zähigkeitskennwerten. Bei diesen Zähigkeitskennwerten handelt es sich bevorzugt um J<sub>d</sub>-Werte, die den Widerstand des untersuchten Werkstoffes gegen die Ausbreitung eines instabilen [[Riss]]es quantifizieren. Ein Vorteil dieser Kennwerte im Vergleich zu der im [[Kerbschlagzugversuch|konventionellen Kerbschlagzugversuch]] ermittelten Kerbschlagzugzähigkeit a<sub>tN</sub> besteht beispielsweise in ihrer besonderen Struktursensitivität.
  
  
Zeile 28: Zeile 30:
 
* [[MPK-Prozedur MPK-IKZV]](2014-07): Prüfung von Kunststoffen – Instrumentierter Kerbschlagzugversuch: Prozedur zur Ermittlung des Risswiderstandverhaltens aus dem instrumentierten Kerbschlagzugversuch
 
* [[MPK-Prozedur MPK-IKZV]](2014-07): Prüfung von Kunststoffen – Instrumentierter Kerbschlagzugversuch: Prozedur zur Ermittlung des Risswiderstandverhaltens aus dem instrumentierten Kerbschlagzugversuch
 
* Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 293–297 (ISBN 978-3-446-44350-1; siehe [[AMK-Büchersammlung]] unter A 18)
 
* Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 293–297 (ISBN 978-3-446-44350-1; siehe [[AMK-Büchersammlung]] unter A 18)
* K. Reincke: Bruchmechanische Bewertung von gefüllten und ungefüllten Elastomerwerkstoffe. Mensch & Buch Verlag, Berlin (2005), (ISBN 978-3-86664-021-4; siehe [[AMK-Büchersammlung]] unter B 1-13)
+
* Reincke, K.: Bruchmechanische Bewertung von gefüllten und ungefüllten Elastomerwerkstoffe. Mensch & Buch Verlag, Berlin (2005), (ISBN 978-3-86664-021-4; siehe [[AMK-Büchersammlung]] unter B 1-13)
 +
* Reincke, K., Grellmann, W.: Elastomers. Impact Loading. In: Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Landolt-Börnstein. Volume VIII/6A3, Springer Verlag, Berlin (2014) S. 502–509, (ISBN 978-3-642-55165-9; siehe [[AMK-Büchersammlung]] unter A 16)
  
 
Weitere Literaturhinweise siehe [[Instrumentierung]]
 
Weitere Literaturhinweise siehe [[Instrumentierung]]

Version vom 18. April 2016, 11:13 Uhr

Instrumentierter Kerbschlagzugversuch (IKZV)

Der instrumentierte Kerbschlagzugversuch wird mit dem Ziel der Bestimmung bruchmechanischer Kennwerte von Folien und Elastomeren, jedoch auch von thermoplastischen Kunststoffen, durchgeführt.

Durch die Instrumentierung von Schlagzug-Pendelschlagwerken, d. h. die Anbringung von Dehnmessstreifen oder eines Piezokraftaufnehmers zur Aufzeichnung des Kraft-Zeit-Verlaufes, wird ein Wissenszuwachs bezüglich der Bewertung der Zähigkeitseigenschaften erreicht. Es ist möglich, unterschiedliche Energieanteile an der Gesamtverformung zu definieren und zu bewerten sowie Messgrößen wie Maximalkraft Fmax und die zugehörige Verformungsgröße lmax zu ermitteln. Die Messgrößen liefern im Rahmen eines Werkstoffvergleiches oder im Rahmen einer Werkstoffoptimierung wichtige Hinweise zur Interpretation der ermittelten Risszähigkeitskennwerte.

Für die Untersuchungen werden doppelseitig metallklingengekerbten Prüfkörper (DENT-Prüfkörper, siehe Bild 1) verwendet.

IKZV Prüfkörper.jpg

Bild 1: Doppelseitig gekerbter Prüfkörper für die Durchführung des Kerbschlagzugversuches

Die Auswahl des zu verwendenden Pendelhammers, und damit der maximal angebotenen Energie, erfolgt in Abhängigkeit von den Eigenschaften (siehe Bruchmechanische Prüfung des zu untersuchenden Werkstoffes. Teilweise verfügen die Pendelschlagwerke auch über Zusatzeinheiten zur definierten Einstellung des Fallwinkels und damit der Pendelhammergeschwindigkeit. Das bedeutet, die bruchmechanischen Eigenschaften von Kunststoffen können in diesem Fall auch in Abhängigkeit von der Beanspruchungsgeschwindigkeit charakterisiert werden. Die Prüfkörper haben die Abmessungen L mindestes 64 mm, W = 10 mm und die Gesamtkerbtiefe a = 2 mm. Die Einspannlänge l0 beträgt 30 mm. Die Versuchsanordnung ist in folgenden Bildern dargestellt.

IKZV schematisch PKEinspann neu.jpg


IKZV Foto Einspannung.jpg

Im Ergebnis des instrumentierten Kerbschlagzugversuches erfolgt auf der Grundlage der ausgewerteten Kraft-Verlängerungs-Diagramme die Berechnung von bruchmechanischen Zähigkeitskennwerten. Bei diesen Zähigkeitskennwerten handelt es sich bevorzugt um Jd-Werte, die den Widerstand des untersuchten Werkstoffes gegen die Ausbreitung eines instabilen Risses quantifizieren. Ein Vorteil dieser Kennwerte im Vergleich zu der im konventionellen Kerbschlagzugversuch ermittelten Kerbschlagzugzähigkeit atN besteht beispielsweise in ihrer besonderen Struktursensitivität.


Literaturhinweise

  • MPK-Prozedur MPK-IKZV(2014-07): Prüfung von Kunststoffen – Instrumentierter Kerbschlagzugversuch: Prozedur zur Ermittlung des Risswiderstandverhaltens aus dem instrumentierten Kerbschlagzugversuch
  • Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 293–297 (ISBN 978-3-446-44350-1; siehe AMK-Büchersammlung unter A 18)
  • Reincke, K.: Bruchmechanische Bewertung von gefüllten und ungefüllten Elastomerwerkstoffe. Mensch & Buch Verlag, Berlin (2005), (ISBN 978-3-86664-021-4; siehe AMK-Büchersammlung unter B 1-13)
  • Reincke, K., Grellmann, W.: Elastomers. Impact Loading. In: Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Landolt-Börnstein. Volume VIII/6A3, Springer Verlag, Berlin (2014) S. 502–509, (ISBN 978-3-642-55165-9; siehe AMK-Büchersammlung unter A 16)

Weitere Literaturhinweise siehe Instrumentierung