Akustische Eigenschaften: Unterschied zwischen den Versionen

Aus Lexikon der Kunststoffprüfung
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „{{PSM_Infobox}} <span style="font-size:1.2em;font-weight:bold;">Akustische Eigenschaften</span> __FORCETOC__ ==Grundlagen== Die akustischen Eigenschaften werden …“)
 
Zeile 13: Zeile 13:
 
|}
 
|}
  
Hierbei ist M der Modul, der je nach Anregungsart der [[Elastizität]]s-, Schub- oder Kompressionsmodul sein kann und ρ die Massendichte (siehe: [[Dichte]]) des Werkstoffs. Im Falle von Longitudinalwellen (= Längswellen, d. h. Wellenausbreitung und Teilchenschwingungen sind parallel) geht Gleichung (1) über in
+
Hierbei ist M der Modul, der je nach Anregungsart der [[Elastizität]]s-, [[Schubmodul|Schub]]- oder Kompressionsmodul sein kann und ρ die Massendichte (siehe: [[Dichte]]) des Werkstoffs. Im Falle von Longitudinalwellen (= Längswellen, d. h. Wellenausbreitung und Teilchenschwingungen sind parallel) geht Gleichung (1) über in
  
 
{|
 
{|
Zeile 33: Zeile 33:
 
|}
 
|}
  
Der Faktor 2 entsteht durch den doppelten Schallweg im Impuls-Echo-Verfahren. Der Faktor α im Exponenten der Gl. (3) ist der Schalldämpfungskoeffizient; er besitzt die Dimension 1/m und stellt damit einen werkstoffspezifischen [[Kennwert]] dar, der aber von der Messfrequenz abhängig ist:
+
Der Faktor 2 entsteht durch den doppelten Schallweg im [[Ultraschall-Impuls-Echo-Technik|Impuls-Echo-Verfahren]]. Der Faktor α im Exponenten der Gl. (3) ist der Schalldämpfungskoeffizient; er besitzt die Dimension 1/m und stellt damit einen werkstoffspezifischen [[Kennwert]] dar, der aber von der Messfrequenz abhängig ist:
  
 
{|
 
{|
Zeile 109: Zeile 109:
 
|style="text-align:center" | 0,33
 
|style="text-align:center" | 0,33
 
|-
 
|-
|Derakane 411 (36 % GF)
+
|Derakane 411 (36 M.-% GF)
 
|style="text-align:center" | 2510
 
|style="text-align:center" | 2510
 
|style="text-align:center" | 0,70
 
|style="text-align:center" | 0,70
 
|-
 
|-
|Derakane 411 (70 % GF)
+
|Derakane 411 (70 M.-% GF)
 
|style="text-align:center" | 3050
 
|style="text-align:center" | 3050
 
|style="text-align:center" | 0,50
 
|style="text-align:center" | 0,50

Version vom 18. Dezember 2017, 08:57 Uhr

Ein Service der
Logo psm.jpg
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Unser Weiterbildungsangebot:
https://www.psm-merseburg.de/weiterbildung
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

Akustische Eigenschaften

Grundlagen

Die akustischen Eigenschaften werden im Wesentlichen durch die Werkstoffkennwerte Schallgeschwindigkeit und Schalldämpfung repräsentiert. Sie sind eng verknüpft mit den mechanischen Werkstoffkenngrößen Elastizitätsmodul (kurz: E-Modul) und Querkontraktionszahl sowie der Zähigkeit. Den Zusammenhang zwischen der Schallgeschwindigkeit v mit dem E-Modul M und der Querkontraktionszahl µ zeigt die folgende Gleichung:

. (1)

Hierbei ist M der Modul, der je nach Anregungsart der Elastizitäts-, Schub- oder Kompressionsmodul sein kann und ρ die Massendichte (siehe: Dichte) des Werkstoffs. Im Falle von Longitudinalwellen (= Längswellen, d. h. Wellenausbreitung und Teilchenschwingungen sind parallel) geht Gleichung (1) über in

. (2)

Schalldämpfung und Schalldämpfungskoeffizient

Die Schalldämpfung zeigt aufgrund der inneren Reibung der Volumenelemente beim Durchgang der Welle durch das Medium eine exponentielle Abhängigkeit der Schallintensität:

. (3)

Der Faktor 2 entsteht durch den doppelten Schallweg im Impuls-Echo-Verfahren. Der Faktor α im Exponenten der Gl. (3) ist der Schalldämpfungskoeffizient; er besitzt die Dimension 1/m und stellt damit einen werkstoffspezifischen Kennwert dar, der aber von der Messfrequenz abhängig ist:

. (4)

Temperaturabhängigkeit der akustischen Eigenschaften

Speziell Kunststoffe besitzen eine starke Temperaturabhängigkeit der akustischen und mechanischen Eigenschaften, die insbesondere das viskoelastische Verhalten und die Dämpfung (Gl. 5) dieser Materialien beeinflusst.

. (5)

In der nachfolgenden Tabelle sind einige Schallgeschwindigkeiten und spezifische Dämpfungen ausgewählter Werkstoffe aufgelistet.


Werkstoff Schallgeschwindigkeit (long.) vs (m s-1) Spezifische Dämpfung
V (dB mm-1)
Stahl 5900 0,25
Aluminium 6400 0,13
Messing 4300 0,15
synthetischer Kautschuk 1460 4,12
PMMA 2540 0,31
PS 2350 2,07
PVC 2300 1,85
PA 6 2570 2,38
PP 2550 2,26
PE 1800 2,26
Derakane 411 2400 0,55
Derakane 470 2700 0,33
Derakane 411 (36 M.-% GF) 2510 0,70
Derakane 411 (70 M.-% GF) 3050 0,50


Literaturhinweise

  • Šutilov, V. A.: Physik des Ultraschalls. Akademie Verlag, Berlin (1984)
  • Kuttruff, H.: Akustik – Eine Einführung. S. Hirzel Verlag, Stuttgart Leipzig (2004)
  • Koschkin, N. I., Schirkewitsch, M. G.: Elementare Physik. Akademie Verlag, Berlin (1987)