Spannungsrissbeständigkeit: Unterschied zwischen den Versionen
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{PSM_Infobox}} | {{PSM_Infobox}} | ||
<span style="font-size:1.2em;font-weight:bold;">Spannungsrissbeständigkeit</span> | <span style="font-size:1.2em;font-weight:bold;">Spannungsrissbeständigkeit</span> | ||
+ | __FORCETOC__ | ||
+ | ==Grundlagen== | ||
+ | Die Spannungsrissbildung und der dem Versagen entgegenwirkende Spannungsrisswiderstand (Engl.: Environmental Stress Cracking Resistance) ist von essentieller Bedeutung für die Bewertung des Langzeitverhaltens von [[Kunststoffe]]n für Behälter oder Rohre, aber auch von Klebstoffen, Korrosionsschutzschichten, Kabelummantelungen und in der Medizintechnik, insbesondere in kombinierter [[Beanspruchung]] mit Köperflüssigkeiten, Temperatur und energiereicher Strahlung, z. B. bei der Sterilisation. | ||
− | + | ==Einflussfaktoren== | |
Die Spannungsrissbeständigkeit eines Kunststoffes ist eine komplexe Eigenschaft, deren Einflussfaktoren sich hinsichtlich | Die Spannungsrissbeständigkeit eines Kunststoffes ist eine komplexe Eigenschaft, deren Einflussfaktoren sich hinsichtlich | ||
* des Werkstoffes | * des Werkstoffes | ||
** chemischer Aufbau und Zusammensetzung | ** chemischer Aufbau und Zusammensetzung | ||
− | ** Morphologie | + | ** Morphologie (siehe: [[Mikroskopische Struktur]]) |
** [[Zugversuch Eigenspannungen Orientierungen|Eigenspannungszustand]] | ** [[Zugversuch Eigenspannungen Orientierungen|Eigenspannungszustand]] | ||
* der Umgebung | * der Umgebung | ||
Zeile 15: | Zeile 18: | ||
* der [[Beanspruchung]] | * der [[Beanspruchung]] | ||
** Beanspruchungsart | ** Beanspruchungsart | ||
− | ** [[ | + | ** [[Geschwindigkeit]] bzw. Zeit |
* der Geometrie | * der Geometrie | ||
** Bauteilform | ** Bauteilform | ||
Zeile 23: | Zeile 26: | ||
differenzieren lassen. | differenzieren lassen. | ||
− | Entsprechend dieser Vielzahl häufig komplex wirkender Einflussfaktoren und der praktischen Bedeutung des Spannungsrissverhaltens existieren zahlreiche genormte Prüfverfahren. Dabei handelt es sich vorwiegend um Normen für Prüfverfahren an Fertigteilen, wie z. B. an Rohren und Behältern. | + | ==Ausgewählte Methoden== |
+ | |||
+ | Entsprechend dieser Vielzahl häufig komplex wirkender Einflussfaktoren und der praktischen Bedeutung des Spannungsrissverhaltens (siehe auch: [[Spannungsrisskorrosion]]) existieren zahlreiche genormte Prüfverfahren. Dabei handelt es sich vorwiegend um Normen für Prüfverfahren an Fertigteilen, wie z. B. an Rohren und Behältern. | ||
− | Für den Bereich der Werkstoffentwicklung und -optimierung wurden neben diesen | + | Für den Bereich der Werkstoffentwicklung und -optimierung wurden neben diesen [[Bauteilprüfung|Fertigteilprüfverfahren]] Methoden entwickelt, die eine Bestimmung von [[Kennwert]]en an genormten [[Prüfkörper]]n gestatten. Die drei wichtigsten Methoden sind: |
* der [[Zeitstandzugversuch]] nach DIN EN ISO 22088-2 | * der [[Zeitstandzugversuch]] nach DIN EN ISO 22088-2 | ||
Zeile 34: | Zeile 39: | ||
'''Literaturhinweise''' | '''Literaturhinweise''' | ||
− | * Ramsteiner, F.: Bewertung der Spannungsrissbeständigkeit. In: Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, (2015) 3. Auflage, S. 415/416, (ISBN 978-3-446-44350-1; siehe [[AMK-Büchersammlung]] unter A 18) | + | * Ramsteiner, F.: Bewertung der Spannungsrissbeständigkeit. In: [[Grellmann,_Wolfgang|Grellmann, W.]], [[Seidler,_Sabine|Seidler, S.]] (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, (2015) 3. Auflage, S. 415/416, (ISBN 978-3-446-44350-1; siehe [[AMK-Büchersammlung]] unter A 18) |
− | * Lach, R., Grellmann, W.: Stress Cracking Resistance. In: Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Landolt-Börnstein. Volume VIII/6A3, Springer Verlag, Berlin (2014) S. 332–356, (ISBN 978-3-642-55165-9; siehe [[AMK-Büchersammlung]] unter A 16) | + | * [https://researchgate.net/profile/Ralf-Lach Lach, R.]., [https://www.researchgate.net/profile/Wolfgang-Grellmann Grellmann, W.]: Stress Cracking Resistance. In: Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Landolt-Börnstein. Volume VIII/6A3, Springer Verlag, Berlin (2014) S. 332–356, (ISBN 978-3-642-55165-9; siehe [[AMK-Büchersammlung]] unter A 16) |
* Brown, R. P.: Testing Plastics for Resistance to Environmental Stress Cracking. Polymer Testing 1 (1980) 267–282 | * Brown, R. P.: Testing Plastics for Resistance to Environmental Stress Cracking. Polymer Testing 1 (1980) 267–282 | ||
− | * Bledzki, A.K., Barth, C.: Spannungsrissbeständigkeit von Polycarbonat messen. Materialprüfung 40 (1998) 404–410 | + | * Bledzki, A. K., Barth, C.: Spannungsrissbeständigkeit von Polycarbonat messen. Materialprüfung 40 (1998) 404–410 |
− | * Bohlmann, B., Hirth, T., Grellmann, W., Langer, B.: The Effect of Disinfection Methods on the Mechanical Properties of Thermoplastic Recyclates. Macromolecular Materials and Engineering 290 (2005) 1176–1183 | + | * Bohlmann, B., Hirth, T., [https://de.wikipedia.org/wiki/Wolfgang_Grellmann Grellmann, W.], Langer, B.: The Effect of Disinfection Methods on the Mechanical Properties of Thermoplastic Recyclates. Macromolecular Materials and Engineering 290 (2005) 1176–1183 |
+ | * Bajaj, P., Wright, K. D., Bernhard, K., Heil, D.: Immer den Durchblick behalten. Chemikalien- und Spannungsrissbeständigkeit von PMMA-basierten Compounds im medizinischen Umfeld. Kunststoffe 5 (2019) 40–44 | ||
* DIN EN ISO 22088: Kunststoffe – Bestimmung der Beständigkeit gegen umgebungsbedingte Spannungsrissbildung (ESC)<br> | * DIN EN ISO 22088: Kunststoffe – Bestimmung der Beständigkeit gegen umgebungsbedingte Spannungsrissbildung (ESC)<br> | ||
: Teil 1 (2006-11): Allgemeine Anleitung<br> | : Teil 1 (2006-11): Allgemeine Anleitung<br> | ||
Zeile 46: | Zeile 52: | ||
: Teil 5 (2009-10): Verfahren mit konstanter Zugverformung<br> | : Teil 5 (2009-10): Verfahren mit konstanter Zugverformung<br> | ||
: Teil 6 (2009-10): Verfahren mit langsamer Dehnrate | : Teil 6 (2009-10): Verfahren mit langsamer Dehnrate | ||
+ | |||
+ | [[Kategorie:Spannungsrissbeständigkeit]] |
Aktuelle Version vom 4. August 2023, 11:08 Uhr
Ein Service der |
---|
Polymer Service GmbH Merseburg |
Tel.: +49 3461 30889-50 E-Mail: info@psm-merseburg.de Web: https://www.psm-merseburg.de |
Unser Weiterbildungsangebot: https://www.psm-merseburg.de/weiterbildung |
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg |
Spannungsrissbeständigkeit
Grundlagen
Die Spannungsrissbildung und der dem Versagen entgegenwirkende Spannungsrisswiderstand (Engl.: Environmental Stress Cracking Resistance) ist von essentieller Bedeutung für die Bewertung des Langzeitverhaltens von Kunststoffen für Behälter oder Rohre, aber auch von Klebstoffen, Korrosionsschutzschichten, Kabelummantelungen und in der Medizintechnik, insbesondere in kombinierter Beanspruchung mit Köperflüssigkeiten, Temperatur und energiereicher Strahlung, z. B. bei der Sterilisation.
Einflussfaktoren
Die Spannungsrissbeständigkeit eines Kunststoffes ist eine komplexe Eigenschaft, deren Einflussfaktoren sich hinsichtlich
- des Werkstoffes
- chemischer Aufbau und Zusammensetzung
- Morphologie (siehe: Mikroskopische Struktur)
- Eigenspannungszustand
- der Umgebung
- physikalische und chemische Eigenschaften des Mediums
- Luftfeuchtigkeit (siehe: Normklimate)
- Temperatur
- der Beanspruchung
- Beanspruchungsart
- Geschwindigkeit bzw. Zeit
- der Geometrie
- Bauteilform
- Abmessungen
- Risse
differenzieren lassen.
Ausgewählte Methoden
Entsprechend dieser Vielzahl häufig komplex wirkender Einflussfaktoren und der praktischen Bedeutung des Spannungsrissverhaltens (siehe auch: Spannungsrisskorrosion) existieren zahlreiche genormte Prüfverfahren. Dabei handelt es sich vorwiegend um Normen für Prüfverfahren an Fertigteilen, wie z. B. an Rohren und Behältern.
Für den Bereich der Werkstoffentwicklung und -optimierung wurden neben diesen Fertigteilprüfverfahren Methoden entwickelt, die eine Bestimmung von Kennwerten an genormten Prüfkörpern gestatten. Die drei wichtigsten Methoden sind:
- der Zeitstandzugversuch nach DIN EN ISO 22088-2
- das Biegestreifenverfahren nach DIN EN ISO 22088-3 und
- das Kugel- oder Stifteindrückverfahren DIN EN ISO 22088-4
Literaturhinweise
- Ramsteiner, F.: Bewertung der Spannungsrissbeständigkeit. In: Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, (2015) 3. Auflage, S. 415/416, (ISBN 978-3-446-44350-1; siehe AMK-Büchersammlung unter A 18)
- Lach, R.., Grellmann, W.: Stress Cracking Resistance. In: Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Landolt-Börnstein. Volume VIII/6A3, Springer Verlag, Berlin (2014) S. 332–356, (ISBN 978-3-642-55165-9; siehe AMK-Büchersammlung unter A 16)
- Brown, R. P.: Testing Plastics for Resistance to Environmental Stress Cracking. Polymer Testing 1 (1980) 267–282
- Bledzki, A. K., Barth, C.: Spannungsrissbeständigkeit von Polycarbonat messen. Materialprüfung 40 (1998) 404–410
- Bohlmann, B., Hirth, T., Grellmann, W., Langer, B.: The Effect of Disinfection Methods on the Mechanical Properties of Thermoplastic Recyclates. Macromolecular Materials and Engineering 290 (2005) 1176–1183
- Bajaj, P., Wright, K. D., Bernhard, K., Heil, D.: Immer den Durchblick behalten. Chemikalien- und Spannungsrissbeständigkeit von PMMA-basierten Compounds im medizinischen Umfeld. Kunststoffe 5 (2019) 40–44
- DIN EN ISO 22088: Kunststoffe – Bestimmung der Beständigkeit gegen umgebungsbedingte Spannungsrissbildung (ESC)
- Teil 1 (2006-11): Allgemeine Anleitung
- Teil 2 (2006-11): Zeitstandzugversuch
- Teil 3 (2006-11): Biegestreifenverfahren
- Teil 4 (2006-11): Kugel- oder Stifteindrückverfahren
- Teil 5 (2009-10): Verfahren mit konstanter Zugverformung
- Teil 6 (2009-10): Verfahren mit langsamer Dehnrate