Relaxation Kunststoffe: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „<span style="font-size:1.2em;font-weight:bold;">Relaxationsverhalten von Kunststoffen</span> Das Kennwertniveau von Kunststoffen wird in hohem Maße von …“) |
|||
Zeile 1: | Zeile 1: | ||
+ | {{PSM_Infobox}} | ||
<span style="font-size:1.2em;font-weight:bold;">Relaxationsverhalten von Kunststoffen</span> | <span style="font-size:1.2em;font-weight:bold;">Relaxationsverhalten von Kunststoffen</span> | ||
Version vom 23. Juni 2017, 09:27 Uhr
Ein Service der |
---|
Polymer Service GmbH Merseburg |
Tel.: +49 3461 30889-50 E-Mail: info@psm-merseburg.de Web: https://www.psm-merseburg.de |
Unser Weiterbildungsangebot: https://www.psm-merseburg.de/weiterbildung |
PSM bei Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg |
Relaxationsverhalten von Kunststoffen
Das Kennwertniveau von Kunststoffen wird in hohem Maße von Prüfbedingungen wie Prüfgeschwindigkeit und Prüftemperatur beeinflusst. Dieses Verhalten wird mit den viskoelastischen Eigenschaften dieser Werkstoffgruppe beschrieben und zeigt sich unter Einsatzbedingungen schon bei Raumtemperatur in der Retardation (Kriechen) und der Spannungsrelaxation. Bei höheren Temperaturen sind diese Effekte noch viel deutlicher ausgeprägt. Unter Einsatzbedingungen von Kunststoffbauteilen bedeutet die Relaxation, dass erforderliche Vorspannungen von Fügeteilen abgebaut werden und damit die Maßhaltigkeit und somit die Funktionalität solcher Bauteile langfristig negativ beeinflusst wird. Die Spannungsrelaxation von Kunststoffen kann vereinfacht mit dem Schema in Bild 1 dargestellt werden.
Bild 1: | Schematische Darstellung des Relaxationsverhaltens von Kunststoffen |
Wird eine Deformation ε0 auf einen Prüfkörper oder Bauteil aufgebracht und anschließend eine definierte Zeit gehalten, dann reagiert der Prüfkörper oder das Bauteil zunächst mit einem spontanen Anstieg der Spannung auf den Wert σ0. In Abhängigkeit von der Haltezeit t der Belastung und der Temperatur T stellt sich dann eine zeitabhängige Abnahme der Spannung ein, die als Spannungsrelaxation σ(t) bezeichnet wird. Für den Fall der Zugbeanspruchung stellt sich das Relaxationsverhalten eines beidseitig einspannten Prüfkörpers mit der Ausgangslänge L0 entsprechend dem Bild 2 dar.
Bild 2: | Schema des Relaxationsverhaltens von Kunststoffen im Zugversuch |
Wird dieser Prüfkörper einer Verformung ΔL bzw. einer Dehnung ε0 unterworfen, dann ergibt sich je nach Deformationshöhe spontan eine rein linear-elastische oder kombinierte Spannung, bestehend aus einem linear-elastischen und linear-visko-elastischen Anteil ein. Definitionsgemäß bedeutet Relaxation die Abnahme der Spannung unter einer konstanten Verformung, weshalb bei Halten des Deformationszustands über einen Zeitraum Δt eine zeitabhängiger Spannungsabfall σ(t) entsteht. Wird die Traverse der Prüfmaschine auf den Ausgangszustand zurückgefahren, dann tritt eine spontane Entlastung ein. Aufgrund der Spannungsrelaxation und der Zwangsbedingung der Einspannklemmen wird dann eine Druckspannung auftreten, wie es auch beim Zugversuch während des Einspannvorganges von Prüfkörpern beobachtet wird. Da die Viskoelastizität eine zeitabhängige Elastizität darstellt, die auf der verzögerten Gleichgewichtseinstellung der Makromoleküle beruht, dauert es eine gewisse Zeit bis sich durch Rückstellprozesse der lastfreie Ausgangszustand wieder einstellt. Werden die Einspannklemmen nach Beendigung des Versuchs sofort geöffnet, dann stellt sich die Last sofort zurück, allerdings treten dann geringe Kriecherscheinungen auf.
Literaturhinweise
[1] | Höninger, H.: Statisches Langzeitverhalten. In: Grellmann, W., Seidler, S. (Hrsg.): Kunststoffprüfung. Carl Hanser Verlag, München (2015) 3. Auflage, S. 182–192 (ISBN 978-3-446-44350-1; siehe AMK-Büchersammlung unter A 18) |