Aus Lexikon der Kunststoffprüfung
Wechseln zu: Navigation, Suche
Ein Service der
Logo psm.jpg
Polymer Service GmbH Merseburg
Tel.: +49 3461 46 2895
E-Mail: info@psm-merseburg.de
Web: www.psm-merseburg.de

Instrumentierte Härtemessung, Relaxation

Allgemeines

Kunststoffe weisen im Gegensatz zu metallischen Werkstoffen schon bei Raumtemperatur eine Zeitabhängigkeit der mechanischen Eigenschaften auf die als Viskoelastizität bekannt ist. In Abhängigkeit von der absoluten Höhe der Beanspruchung bzw. Verformung unterscheidet man dabei in die linear-viskoelastische und die nicht-linear-viskoelastische Deformation. Bei einer statischen Langzeitbelastung besitzen diese zeitabhängigen Deformationen und Lastzustände je nach Temperatur und Belastungshöhe eine wesentliche Bedeutung für den praktischen Einsatz. Dieses kunststoffspezifische Verformungsverhalten wird als Kriechen (Retardation, engl. Creep) oder Spannungsrelaxation bezeichnet.

Grundlagen der Relaxation

Bei einer konstanten statischen Verformung wird nach einer spontanen linear-elastischen Zunahme der Spannung eine zeitabhängige Abnahme der Belastung registriert, die als Spannungsrelaxation bezeichnet wird und von der Temperatur und der Belastungshöhe abhängt (Bild 1). Nach der Entlastung wird sich zunächst die linear-elastische Verformung ohne Zeitverzögerung zurückstellen, wodurch unter der Bedingung einer festen Einspannung eine Druckspannung im Prüfkörper aufgebaut wird. In Abhängigkeit von der Zeit und der Belastungshöhe wird diese Spannung ebenfalls relaxieren.

Relaxation 1a.jpg
1 – lastloser Zustand
2 – elastische Verformung
3 – Spannungsrelaxation
4 – elastische Rückverformung
5 – Spannungsrelaxation
Bild 1: Schematische Darstellung der Spannungsrelaxation bei Kunststoffen

In Abhängigkeit von der Belastungshöhe und der Prüftemperatur werden auch irreversible Relaxationsprozesse beobachtet, die bei Langzeitbeanspruchung zu Entlastungen führen können und damit bei notwendigen Vorspannungszuständen z. B. bei Schraubverbindungen den Verlust der Bauteilfunktionalität hervorrufen, wobei der Absolutbetrag dieser Prozesse maßgeblich von der Art der eingesetzten Kunststoffe bestimmt wird.

Für die Untersuchung derartiger Relaxationsprozesse werden normalerweise Zeitstandzug-, Zeitstandbiege- und Zeitstanddruckversuche verwendet, die auf der Erzeugung uniaxialer Spannungszustände im Prüfkörper basieren. Zielstellung ist dabei die Erfassung des mehrparametrigen Zusammenhanges zwischen Spannung, Dehnung und der Zeit als auch der Temperatur, der im Spannungs-Dehnungs-Zeit-Schaubild dokumentiert wird.

Instrumentierte Makrohärtemessung

Sind für den zu untersuchenden Kunststoff keine Prüfkörper (z. B. Werkstoffe der Elektronik, Mikrosystem- und Medizintechnik) verfügbar und sollen schnell Ergebnisse zur Relaxationsneigung eines Materials vorliegen, dann kann die instrumentierte Makrohärtemessung auch für diese Applikation eingesetzt werden (Bild 2).

Relaxation komplett.jpg

Bild 2: Schematischer Aufbau der instrumentierten Makrohärte für die Untersuchung des Relaxationsverhaltens

Durch die Universalprüfmaschine wird zu diesem Zweck eine konstante Eindringtiefe h0 mit einer Rampenfunktion angefahren und dann durch Abschaltung des Antriebs über eine vorgegebene Zeit konstant gehalten (siehe Zugversuch Regelung). In Abhängigkeit vom verwendeten Eindringkörper, der Eindringtiefe und dem hervorgerufenen Spannungszustand stellt sich zunächst eine linear-elastische Verformung bzw. korrespondierende Prüfkraft ein. Unter der Wirkung der konstanten Eindringtiefe wird dann eine Abnahme der Prüflast registriert, die das Relaxationsverhalten des Werkstoffes beschreibt. Nach Ablauf der Haltezeit wird die Eindringtiefe zurückgefahren bis die Kraft den Wert Null erreicht, wodurch sich der elastische Eindringanteil spontan zurückstellt und eine resultierende Eindringtiefe auftritt, die sich mit der Zeit allerdings auch verringert.

Mit der angeschlossenen Temperierkammer kann im Bereich von -100 °C bis +100 °C zusätzlich die Prüftemperatur variiert werden, wodurch die Spannungsrelaxtion mit der instrumentierten Makrohärteprüfung in einem weiten Einsatzbereich untersucht werden kann.


Literaturhinweise

Einführung in die Methode:

  • Fröhlich, F., Grau, P., Grellmann, W.: Performance and Analysis of Recording Microhardness Tests. Phys. stat. sol. (a) 42 (1977) 79–89
  • Grellmann, W.: Ermittlung der Härte von Gläsern und Keramiken. Dissertation, Martin-Luther-Universität Halle-Wittenberg (1978)
  • May, M., Fröhlich, F., Grau, P., Grellmann, W.: Anwendung der Methode der registrierenden Mikrohärteprüfung für die Ermittlung von mechanischen Materialkennwerten an Polymerwerkstoffen. Plaste und Kautschuk 30 (1983) H. 3, S. 149–153

Aktuelle Arbeiten:

  • Bierögel, C., Schöne, J., Lach, R., Grellmann, W.: Bewertung des temperatur- und zeitabhängigen Verhaltens von Thermoplasten und Elastomeren mittels der instrumentierten Makroeindringprüfung. In: Grellmann, W. (Hrsg.): Neue Entwicklungen in der Werkstoffprüfung – Herausforderung an die Kennwertermittlung. Tagung "Werkstoffprüfung 2011", 1. und 2. Dezember 2011, Berlin, Tagungsband S. 285–292 (ISBN 978-3-98114516-1-0; siehe AMK-Büchersammlung unter A 13)
  • Grellmann, W., Langer, B.: Methods for Polymer Diagnostics for the Automotive Industry. Materialprüfung 55 (2013) 17–22 Download als pdf
  • Lach, R., Schöne, J., Bierögel, C., Grellmann, W.: Instrumented Macroindentation Techniques for Polymers and Composites – Mechanical Properties, Fracture Toughness and Time-Dependent Behaviour as a Function of the Temperature. Macromolecular Symposia 315 (2012) 125–131